Twitter
RSS

Playlist

Get a playlist! Standalone player Get Ringtones

KALKULUS

Kalkulus (dari Bahasa Latin calculus yang artinya "batu kecil") adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus, yang mempunyai aplikasi luas dalam bidang sains dan teknik, digunakan untuk memecahkan masalah kompleks yang tidak cukup diselesaikan dengan menggunakan teknik aljabar elementer. Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus.

Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.

Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.

Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut.


Prinsip-prinsipLimit dan kecil tak terhingga

Limit dan kecil tak terhingga

Kalkulus pada umumnya dikembangkan dengan memanipulasi sejumlah kuantitas yang sangat kecil. Objek ini, yang dapat diperlakukan sebagai angka, adalah sangat kecil. Setiap perkalian dengan kecil takterhingga (infinitesimal) tetaplah kecil takterhingga, dengan kata lain kecil takterhingga tidak memenuhi properti Archimedes. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik untuk memanipulasi kecil takterhingga.

Pada abad ke-19, konsep kecil takterhingga digantikan oleh konsep limit. Limit menjelaskan nilai suatu fungsi pada nilai input tertentu dengan hasil dari input terdekat. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik memanipulasi limit-limit tertentu.


Turunan

Garis singgung pada (x, f(x)). Turunan f'(x) dari sebuah kurva pada sebuah titik adalah kemiringan dari garis singgung yang menyinggung kurva pada titik tersebut.

Kalkulus diferensial adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari turunan atau kemiringan dari sebuah grafik.

Konsep turunan secara fundamental lebih maju dan rumit daripada konsep yang ditemukan di aljabar. Dalam aljabar, seorang murid mempelajari sebuah fungsi dengan input sebuat angka dan output sebuah angka. Tetapi input dari turunan adalah sebuah fungsi dan outputnya juga adalah sebuah fungsi.

Untuk memahami turunan, seorang murid harus mempelajari notasi matematika. Dalam notasi matematika, salah satu simbol yang umumnya dipakai untuk menyatakan turunan dari sebuah fungsi adalah apostrofi. Maka turunan dari f adalah f'.

\begin{align} f(x) &= x^2 \\ f ' (x) &= 2x \end{align}.

Jika input dari sebuah fungsi adalah waktu, maka turunan dari fungsi itu adalah laju perubahan di mana fungsi tersebut berubah.

Jika fungsi tersebut adalah fungsi linear, maka fungsi tersebut dapat ditulis dengan y=mx+b, di mana:

m= \frac{\mbox{rise}}{\mbox{run}}= {\mbox{change in } y \over \mbox{change in } x} = {\Delta y \over{\Delta x}}.

Ini memberikan nilai dari kemiringan suatu garis lurus. Jika sebuah fungsi bukanlah garis lurus, maka perubahan y dibagi terhadap perubahan x bervariasi, dan kita dapat menggunakan kalkulus untuk menentukan nilai pada titik tertentu. Kemiringan dari suatu fungsi dapat diekspresikan:

m={f(x+h) - f(x)\over{(x+h) - x}}\,

di mana koordinat dari titik pertama adalah (x, f(x)) dan h adalah jarak horizontal antara dua titik.

Untuk menentukan kemiringan dari sebuat kurva, kita menggunakan limit:

\lim_{h \to 0}{f(x+h) - f(x)\over{h}}

Sebagai contoh, untuk menemukan gradien dari fungsi f(x) = x2 pada titik (3,9):

\begin{align} f'(3)&=\lim_{h \to 0}{(3+h)^2 - 9\over{h}} \\ &=\lim_{h \to 0}{9 + 6h + h^2 - 9\over{h}}  \\ &=\lim_{h \to 0}{6h + h^2\over{h}} \\ &=\lim_{h \to 0} (6 + h) \\ &= 6  \end{align}


Garis singgung sebagai limit dari garis sekan. Turunan dari kurva f′(x) di suatu titik adalah kemiringan dari garis singgung terhadap kurva di titik tersebut. Kemiringan ini ditentukan dengan memakai nilai limit dari kemiringan garis sekan.

Integral

Kalkulus integral adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari dua konsep yang saling berhubungan, integral taktentu dan integral tertentu. Proses pencarian nilai dari sebuah integral dinamakan pengintegralan (integration). Dengan kata lain, kalkulus integral mempelajari dua operator linear yang saling berhubungan.

Integral taktentu adalah antiturunan, yakni kebalikan dari turunan. F adalah integral taktentu dari f ketika f adalah turunan dari F.

Integral tertentu memasukkan sebuah fungsi dengan outputnya adalah sebuah angka, yang mana memberika luas antar grafik yang dimasukkan dengan sumbu x.

Contohnya adalah jarak yang ditempuh dengan lama waktu tertentu

\mathbf{Jarak} = \mathbf{Kecepatan} \cdot \mathbf{Waktu}

Jika kecepatannya adalah konstan, perhitungan bisa dilakukan dengan perkalian, namun jika kecepatan berubah, maka diperlukan sebuah metode yang lebih canggih. Salah satu metode tersebut adalah memperkirakan jarak tempuh dengan memecahkan lama waktu menjadi banyak interval waktu yang singkat, kemudian dikalikan dengan lama waktu tiap interval dengan salah satu kecepatan di interval tersebut, dan kemudian menambahkan total keseluruhan jarak yang didapat. Kosep dasarnya adalah, jika interval waktu sangat singkat, maka kecepatan dalam interval tersebut tidak berubah banyak. Namun, penjumlahan Riemann hanya memberikan nilai perkiraan. Kita harus mengambil sebuah limit untuk mengdapatkan hasil yang tepat.


Integral dapat dianggap sebagai pencarian luas daerah di bawah kurva f(x), antara dua titik a dan b.

Jika f(x) pada diagram di samping mewakili kecepatan yang berubah-ubah, jarak yang ditempuh antara dua waktu a dan b adalah luas daerah S yang diarsir.

Untuk memperkirakan luas, metode intuitif adalah dengan membagi jarak antar a dan b menjadi beberapa segmen yang sama besar, panjang setiap segmen disimbolkan Δx. Untuk setiap segmel, kita dapat memilih satu nilai dari fungsi f(x). Nilai tersebut misalkan adalah h. Maka luas daerah persegi panjangan dengan lebar Δx dan tinggi h memberikan nilai jarak yang ditempuh di segmen tersebut. Dengan menjumlahkan luas setiap segmen tersebut, maka didapatkan perkiraan jarak tempuh antara a dan b. Nilai Δx yang lebih kecil akan memberikan perkiraan yang lebih baik, dan mendapatkan nilai yang tepat ketika kita menngambil limit Δx mendekati nol.

Simbol dari integral adalah \int \,, berupa S yang dipanjangkan (singkatan dari "sum"). Integral tertentu ditulis sebagai

\int_a^b f(x)\, dx

dan dibaca "Integral dari a ke b dari f(x) terhadap x."

Integral tak tentu, atau anti derivatif, ditulis:

\int f(x)\, dx.

Oleh karena turunan dari fungsi y = x2 + C adalah y ' = 2x (di mana C adalah konstanta),

\int 2x\, dx = x^2 + C.

Teorema dasar

Teorema dasar kalkulus menyatakan bahwa turunan dan integral adalah dua operasi yang saling berlawanan. Lebih tepatnya, teorema ini menghubungkan nilai dari anti derivatif dengan integral tertentu. Karena lebih mudah menghitung sebuah anti derivatif daripada mengaplikasikan definisi dari integral, teorema dasar kalkulus memberikan cara yang praktis dalam menghitung integral tertentu.

Teorema dasar kalkulus menyatakan: Jika sebuah fungsi f adalah kontiniu pada interval [a,b] dan jika F adalah fungsi yang mana turunannya adalah f pada interval (a,b), maka


\int_{a}^{b} f(x)\,dx = F(b) - F(a).

Lebih lanjut, untuk setiap x di interval (a,b),

\frac{d}{dx}\int_a^x f(t)\, dt = f(x).

Aplikasi

Kalkulus digunakan di setiap cabang sains fisik, sains komputer, statistik, teknik, ekonomi, bisnis, kedokteran, kependudukan, dan di bidang-bidang lainnya.

Setiap konsep di mekanika klasik saling berhubungan melalui kalkulus. Massa dari sebuah benda dengan massa jenis yang tidak diketahui, momen inersia dari suatu objek, dan total energi dari sebuah objek dapat ditentukan dengan menggunakan kalkulus. Dalam subdisiplin listrik dan magnetisme, kalkulus dapat digunakan untuk mencari total fluks dari sebuah medan elektromagnetik . Contoh historik lainnya adalah penggunaan kalkulus di hukum gerak Newton, diekspresikan dengan laju perubahan yang merujuk pada turunan: Laju perubahan momentum dari sebuah benda adalah sama dengan resultan gaya yang bekerja bada benda tersebut dengan arah yang sama. Bahkan rumus umum dari hukum ke-dua Newton: Gaya = Massa × Percepatan, mengandung diferensial kalkulus karena percepatan bisa diekspresikan sebagai turunan dari kecepatan. Teori elektromagnetik Maxwell dan teori relativitas Einstein juga diekspresikan dengan diferensial kalkulus.

sumber: http://id.wikipedia.org/wiki/Kalkulus
buat yang bosen baca, ntar gw bagiin cara cepet dalam menghitung. TUNGGU KEDATANGANNYA!! hehehe

Comments (0)

Posting Komentar